47 research outputs found

    Neural Network Demodulation for an Optical Sensor

    Get PDF
    Methods and systems of neural network demodulation for an optical sensor. An optical sensor may be coupled to a structure and be capable of reflecting a reflected optical signal. A wavelength of the reflected optical signal may be spread based on a strain being applied to the structure. A replication device may receive the reflected optical signal from the optical sensor and produce a plurality of optical signals. A filter may be coupled to the replication device to receive an optical signal from the plurality of optical signals and filter the received optical signal. A detector may receive the filtered optical signal and provide a voltage output proportional to an amount of the filtered optical signal received. A neural network may receive the voltage output and determine the strain on the structure

    Detection of Basal Cell Carcinoma using Electrical Impedance and Neural Networks

    Get PDF
    Variations in electrical impedance over frequency might be used to distinguish basal cell carcinoma (BCC) from benign skin lesions, although the patterns that separate the two are nonobvious. Artificial neural networks (ANNs) may be good pattern classifiers for this application. A preliminary study to show the potential of neural networks to distinguish benign from malignant skin lesions using electrical impedance is presented. Electrical impedance was measured in vivo from 1 kHz to 1 MHz at five virtual depths on 18 BCC and 16 benign or premalignant lesions. A feed-forward neural network was trained using back propagation to classify these lesions. Two methods of preprocessing were used to account for the impedance of normal skin and the size of the lesion, one based on estimating the impedance of the lesion relative to adjacent normal skin and one based on estimating the impedance of the lesion independent of size or surrounding normal skin. Neural networks were able to classify measurements in a test set with 100% accuracy for the first preprocessing technique and 85% accuracy for the second. These results indicate electrical impedance may be a promising clinical diagnostic tool for basal cell carcinoma or other forms of skin cancer

    Detection and Classification of Impact-Induced Damage in Composite Plates using Neural Networks

    Get PDF
    Artificial neutral networks (ANN) can be used as an online health monitoring systems (involving damage assessment, fatigue monitoring and delamination detection) for composite structures owing to their inherent fast computing speeds, parallel processing and ability to learn and adapt to the experimental data. The amount of impact-induced strain on a composite structure can be found using strain sensors attached to composite structures. Prior work has shown that strain-based ANN can characterize impact energy on composite plates and that strain signatures can be associated with damage types and severity. This paper reports the extension of this approach for damage classification using finite element analysis to simulate impact-induced strain profiles resulting from impact on composite plates. An ANN employing the backpropagation algorithm was developed to detect and classify this damag

    Intelligent Strain Sensing on a Smart Composite Wing using Extrinsic Fabry-Perot Interferometric Sensors and Neural Networks

    Get PDF
    Strain prediction at various locations on a smart composite wing can provide useful information on its aerodynamic condition. The smart wing consisted of a glass/epoxy composite beam with three extrinsic Fabry-Perot interferometric (EFPI) sensors mounted at three different locations near the wing root. Strain acting on the three sensors at different air speeds and angles-of-attack were experimentally obtained in a closed circuit wind tunnel under normal conditions of operation. A function mapping the angle of attack and air speed to the strains on the three sensors was simulated using feedforward neural networks trained using a backpropagation training algorithm. This mapping provides a method to predict the stall condition by comparing the strain available in real time and the predicted strain by the trained neural network

    Circadian rhythm disruption and Alzheimer’s disease: The dynamics of a vicious cycle

    Get PDF
    All mammalian cells exhibit circadian rhythm in cellular metabolism and energetics. Autonomous cellular clocks are modulated by various pathways that are essential for robust time keeping. In addition to the canonical transcriptional translational feedback loop, several new pathways of circadian timekeeping - non-transcriptional oscillations, post-translational modifications, epigenetics and cellular signaling in the circadian clock - have been identified. The physiology of circadian rhythm is expansive, and its link to the neurodegeneration is multifactorial. Circadian rhythm disruption is prevelant in contamporary society where light-noise, shift-work, and transmeridian travel are commonplace, and is also reported from the early stages of Alzheimer's disease (AD). Circadian alignment by bright light therapy in conjunction with chronobiotics is beneficial for treating sundowning syndrome and other cognitive symptoms in advanced AD patients. We performed a comprehensive analysis of the clinical and translational reports to review the physiology of the circadian clock, delineate its dysfunction in AD, and unravel the dynamics of the vicious cycle between two pathologies. The review delineates the role of putative targets like clock proteins PER, CLOCK, BMAL1, ROR, and clock-controlled proteins like AVP, SIRT1, FOXO, and PK2 towards future approaches for management of AD. Furthermore, the role of circadian rhythm disruption in aging is delineated

    Hands-On Projects and Exercises to Strengthen Understanding of Basic Computer Engineering Concepts

    Get PDF
    The Introduction to Computer Engineering course at the University of Missouri-Rolla provides a thorough understanding of basic digital logic analysis and design. The course covers: digital numbering systems, Boolean algebra, function minimization using Karnaugh maps (K-maps), memory elements, and sequential logic design. Students\u27 grades are determined by their performance on homework assignments, quizzes, and in-class examinations. A laboratory course (optional for all but EE and CpE majors) supplements the lecture by providing experiments that include analysis and design using Mentor Graphics and FPGAs. While the laboratory is a very useful supplement to the lecture, almost half the students taking the lecture are not required to take the laboratory and there is not sufficient time in the laboratory schedule to introduce significant design elements. In Fall 2004, hands-on group projects, for all students, were introduced to the lecture course. The goal was for students to develop a more practical understanding and appreciation of hardware design and to improve motivation. Two projects were introduced that involve design of simple digital systems (based on practical applications), design optimization, and physical realization of the system using logic gates and/or memory elements. Two surveys, conducted during the semester, show the benefit of hands-on projects in gaining experience on basic digital hardware design

    Role of Serine/Threonine Kinase 11 (STK11) or liver kinase B1 (LKB1) Gene in Peutz-Jeghers Syndrome

    Get PDF
    Peutz-Jeghers syndrome (PJS) is a well-described inherited syndrome, characterized by the development of gastrointestinal polyps and characteristic mucocutaneous freckling. PJS is an autosomal prevailing disease, due to genetic mutation on chromosome 19p, manifested by restricted mucocutaneous melanosis in association with gastrointestinal (GI) polyposis. The gene for PJS has recently been shown to be a serine/threonine kinase, known as LKB1 or STK11, which maps to chromosome subband 19p13.3. This gene has a putative coding region of 1302 bp, divided into nine exons, and acts as a tumor suppressor in the hamartomatous polyps of PJS patients and in the other neoplasms that develop in PJS patients. It is probable that these neoplasms develop from hamartomas, but it remains possible that the LKB1 or STK11 locus plays a role in a different genetic pathway of tumor growth in the cancers of PJS patients. This article focuses on the role of LKB1 or STK11 gene expression in PJS and related cancers

    Recent progress in development of dressings used for diabetic wounds with special emphasis on scaffolds

    Get PDF
    Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide-and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW

    The viral capsid as novel nanomaterials for drug delivery

    Get PDF
    The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging
    corecore